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Abstract

A phenomenological model of solids mixing in a circulating fluidized bed is formulated. The characteristic feature of this model is
taking into account the convective flows of particles in the radial direction, which provide the observed in practice essential decrease
of the concentration of particles over the riser height. It is established by comparison of calculated and experimental curves of mixing
that the value of the coefficient of radial dispersion of particles lies within the range 0.0006–0.006 m2/s.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

As is known, solids mixing in the circulating fluidized
bed (CFB) is a multifactor process taking place against
the background of complicated inner hydrodynamics [1].
For the simulation of the phenomenon various calculation
schemes were invoked which reflected, to some extent, the
mechanisms of the real process of solids mixing in the CFB
apparatuses. The proposed models can be arbitrarily
divided into two groups. The first one includes the models
of axial (longitudinal) mixing in which the determining
quantities and concentrations are considered as depending
on just the longitudinal coordinate. In [2], the critical anal-
ysis of such models is carried out and on the basis of it a
rather simple two-zone model of axial solids mixing is
offered which includes the equations:

for the core zone

oAq1�c1

ot
þ u1

oAq1�c1

ox
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for the annular zone
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As is shown in [2], this model is able to adequately
describe the experimental curves of mixing obtained for
both the core zone and the annular zone.

The second group represents the models where the
transfer of marked particles in both the axial and radial
direction is considered. In [3], the experimental data were
interpreted on the basis of the two-dimensional nonstation-
ary model
oc�

ot
¼ Da

o2c�

ox2
þ Dr

r
o
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r
oc�

or

� �
� oðvsc�Þ

ox
; ð3Þ
which does not account for the convective motion of parti-
cles from the core zone to the annular zone. Probably, that
is why the model can be applied only in the upper part of
the CFB where the mechanism mentioned above is slack-
ened and the concentrations of particles in both zones are
practically independent of the height.

The variation of the density over the CFB height is also
not accounted in the model [4]:
oðqðrÞcÞ
ot

þ oðJ sðrÞcÞ
ox

¼ Dr

r
o

or
r
oðqðrÞcÞ

or

� �
; ð4Þ
where Js(r) is the value of the local mass flux of particles
(positive in the core zone and negative in the annular zone).
Model (4) reflects the two-zone structure of CFB and, as
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Nomenclature

A part of the horizontal section of the riser, occu-
pied by ascending particles (core zone)

B part of the horizontal section of the riser, occu-
pied by descending particles (annular zone)

c* concentration of marked particles, kg/m3

c�1, c�2 concentrations of marked particles in the core
zone and the annular zone, kg/m3

c = c*/q(r) dimensionless concentration of marked par-
ticles

c1 ¼ c�1=q1, c2 ¼ c�2=q2 dimensionless concentrations of
marked particles in the core zone and the annu-
lar zone

�c1 ¼ 1
r2

0

R r0

0 2c1r dr, �c2 ¼ 1
R2�r2

0

R R
r0

2c2r dr mean dimension-
less concentrations of marked particles in the
core zone and the annular zone

c0 initial dimensionless concentration of marked
particles

Da,Dr coefficients of axial and radial dispersion of par-
ticles, m2/s

Frt Froude number, Frt = (u � ut)
2/(gH)

g free fall acceleration, m/s2

H height of the riser, m
H0 height of the bottom fluidized bed, m,

H 00 ¼ H0=H
Js mass circulating flow of particles, kg/m2 s
J s dimensionless mass flow of particles,

J s ¼ J s=qsðu� utÞ
n = q2/q1

Pe Peclet number, Pe = (u � ut)R
2/HDr

R radius of the riser, m
r radial coordinate, m, r 0 = r/R
r0 radius of the core zone, m, r00 ¼ r0=R ¼

ffiffiffi
A
p

T period of circulation, s, T = Dtr + Dt,
T 0 = T(u � ut)/H

t time, s
t 0 dimensionless time, t 0 = t(u � ut)/H
Dt time of recirculation (time interval between the

escape of marked particles from the upper part
of the riser and their enter in the riser base), s,
Dt 0 = Dt(u � ut)/H

Dtr time in which particles in the core zone pass
through the part of the riser from x = H0 to
x = H, s

u superficial gas velocity, m/s
ut single-particle terminal velocity, m/s
u1, u2 axial velocities of particles in the core zone and

the annular zone, m/s
u�1, u�2 radial velocities of particles in the core and

annular zone, m/s
u01 ¼ u1=ðu� utÞ, u02 ¼ u2=ðu� utÞ,
ðu�1Þ

0 ¼ u�1=ðu� utÞ, ðu�2Þ
0 ¼ u�2=ðu� utÞ

vs velocity of particles, m/s
x vertical coordinate, m
x 0 = x/H

Greek symbols

b* coefficient of interphase exchange in (29), 1/s
b1 coefficient in (28), 1/s
e porosity
q = Aq1 + Bq2 density of the bed mean over horizontal

section of the riser, kg/m3

q1,q2 densities of the bed in the core and the annular
zone, kg/m3

Indices

a axial
c core
d delay
eff effective
f fluid
fb bottom fluidized bed
r radial
s particles
t conditions of floating of a single particle
0 initial value
1 core zone
2 annular zone
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well as (3), it can be justifiably used only in the upper part
of the bed. Besides, because of the wrong notation of the
dispersion term it gives a physically absurd expression
c1Dr

r
o
or ðr

oqðrÞ
or Þ 6¼ 0 for t!1, when c! c1 = const. Never-

theless, as the authors of [4] state, this model adequately
described the experimental data in the upper part
(x = 4 m) of the 5-m riser.

As is seen, the field of application of models (3) and (4)
is limited. They can be used only in the upper zone of CFB,
where q = const. Besides, it is important to note that in the
models mentioned above there is no evident form of
accounting for the most important mechanism of mixing
– radial convection of particles (Fig. 1) which provides
the observed in practice essential decrease of q1 and q2 with
the height at practically constant longitudinal velocities u1

and u2.
In the present work, two problems were posed: to

account for the indicated mechanism of mixing thus
increasing the level of theoretical analysis and to develop
on this basis the generalized model of the process which
describes solids mixing over the whole volume of the riser
of CFB.



Fig. 1. Model of solids mixing in CFB.
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2. Formulation of the theoretical model

Main assumptions which form the basis of the physical
model are the following:

(1) The upward motion of particles with the velocity u1 in
core zone and downward motion near the riser walls
with the velocity u2 (Fig. 1); these velocities are calcu-
lated by the formulas

u1 ¼
u
A
� ut; ð5Þ

u2 ¼ 0:1ðu� utÞFr�0:7
t : ð6Þ

We note that (5) is written assuming the absence of gas
filtration in the annular zone and (6) – according to [5].
In this case, the gas velocity in the core zone is u/A.

(2) The local densities of the core zone q1 and the annular
zone q2 depend only on the longitudinal coordinate x.
It is anticipated that there is a linear connection

q2 ¼ nq1 ð7Þ

between them; here n is a coefficient depending on x (see
below).
(3) In any horizontal section, the equality

J s ¼ Au1q1 � Bu2q2 ð8Þ

expressing the existence of the outer circulation of par-
ticles holds.

(4) The mean (across the horizontal section) bed density is
described by the empirical formula [6]

q
qs

¼ J sðx0Þ�0:82
; H 00 < x0 6 1: ð9Þ

(5) The zone with the constant density and almost ideal
solids mixing – the bottom fluidized bed – exist in the
lower part of the bed. The particles entering from the
descending loop and the annular zone are accelerated
in this zone of CFB that acts as a peculiar dynamic
gas distributor, the height of which depends on the
operating parameters of CFB and is calculated by the
formula [7]

H 00 ¼ 1:25Fr�0:8
t J 1:1

s : ð10Þ
The porosity of the bottom bed depends weakly on the
conditions of CFB operation. In [7], it is offered to cal-
culate this quantity by the relation

efb ¼ 1� 0:33Fr�0:045
t : ð11Þ

(6) Radial convection of particles from the core zone into
the annular zone with the velocities u�1 (core) and u�2
(annular zone) is taken into account (Fig. 1). It is
apparent that the values of these velocities are deter-
mined by the rate of changing of the mean CFB density
over the riser height (see below).

(7) The axial transfer of marked particles is disregarded.
The possibility of this is discussed in [2].

(8) The coefficient of radial dispersion of particles in both
zones is the same.
As is seen from (7)–(9), there are only two equations for
determining the quantities A, B, and n

Au01 þ Bnu02 ¼ ðAþ BnÞðx0Þ0:82
; ð12Þ

Aþ B ¼ 1: ð13Þ

Thus, one of these quantities should be determined
beforehand. In [2], it is assumed on the basis of experi-
mental data that n = 3 and the quantities A and B are
found from (12) and (13) as functions of x. In the
present work, for the convenience of numerical calcula-
tions, these values are quantities to be constant and
equal to: A = 0.85, B = 0.15, and the quantity n is deter-
mined as

n ¼ A
B

u01 � ðx0Þ
0:82

u02 þ ðx0Þ
0:82

: ð14Þ

On the basis of the above assumptions forming the phys-
ical model of the process, we write the system of equations
of convective dispersion representing the transfer of
marked particles in the CFB riser
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0 6 r < r0:
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o
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oc1

or
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r0 < r 6 R:
oq2c2

ot
� u2

oq2c2

ox
þ q2

r
o

or
ðru�2c2Þ

¼ q2Dr

r
o

or
r
oc2

or

� �
: ð16Þ

To determine of radial velocities of particles u�1 and u�2
which provide the experimentally observed essential
decrease of the bed density over the riser height, we use
the equations of continuity of particle fluxes in the corre-
sponding zones:

0 6 r < r0:
oq1

ot
þ u1

oq1

ox
þ q1

r
o

or
ru�1
� �

¼ 0; ð17Þ

r0 < r 6 R :
oq2

ot
� u2

oq2

ox
þ q2

r
o

or
ru�2
� �

¼ 0: ð18Þ

Based on oq1

ot ¼
oq2

ot ¼ 0, after integration of (17) and (18)
with respect to r we obtain the relations for calculation
of the sought-for velocities

u�1 ¼ �
r
2

u1

1

q1

dq1

dx
; ð19Þ

u�2 ¼ �
AR2

2r
u1

q2

dq1

dx
þ 1

2
r � AR2

r

� �
u2

q2

dq2

dx
: ð20Þ

We note that in deriving (19) and (20) the equality

q1u�1 ¼ q2u�2 at r ¼ r0 ð21Þ
is used which expresses the condition of continuity of the
radial flux of particles on the zone boundary. As is seen
from (19) and (20)

u�1jr¼0 ¼ 0; ð22Þ

u�2jr¼R ¼ �
R

2q2

dJ s

dx
¼ 0: ð23Þ

Equalities (22) and (23) and the structure of expressions
(19) and (20) testify to the physical nature of the obtained
dependences for calculation of the velocities u�1 and u�2. The
densities of the core zone and the annular zone included in
(19) and (20) are expressed in terms of the mean bed
density

q1 ¼
q

Aþ Bn
; q2 ¼

nq
Aþ Bn

: ð24Þ

It is not difficult to show that Eqs. (1) and (2) describing
the axial transfer of the marked particles in CFB are the
special case of system (15) and (16). We integrate (15) with
respect to r from 0 to r0, and (16) – from r0 to R:

oAq1�c1

ot
þ u1

oAq1�c1

ox
þ 2r0q1

R2

ðu�1c1Þ
����
r0

¼ 2r0

R2
q1Dr

oc1

or

����
r0

; ð25Þ

oBq2�c2

ot
� u2

oBq2�c2

ox
� 2r0q2

R2

ðu�2c2Þ
����
r0

¼ � 2r0

R2
q2Dr

oc2

or

����
r0

:

ð26Þ
In writing (25) and (26) we used equalities (22) and (23)
and the condition of the absence of the radial disperse flux
of marked particles on the riser wall:

oc2

or

����
r¼R

¼ 0: ð27Þ

It is assumed formally in (25) and (26)

2r0

R2
q1ðu�1c1Þ

����
r0

¼ Aq1b1�c1; ð28Þ

2r0

R2
q1Dr

oc1

or

����
r0

¼ b�qð�c2 � �c1Þ: ð29Þ

Relationships (28) and (29) express convective and disperse
fluxes of marked particles on the zone boundary in terms of
the mean concentrations �c1 and �c2 and thereby determine
the effective quantities b1 and b* which are the main param-
eters of the model of axial solids mixing (1) and (2).

Eqs. (1) and (2) follow from (25) and (26) on substitu-
tion in them of relationships (28) and (29) in view of the
equality

q1 u�1c1 � Dr

oc1

or

� �����
r0

¼ q2 u�2c2 � Dr

oc2

or

� �����
r0

; ð30Þ

which expresses the continuity of the total flux of the
marked particles on the zone boundary. We note that this
condition may be named the generalized Dankwerts
condition.

By the continuity equations (17) and (18), system (15)
and (16) is simplified to

oc1

ot
þ u1

oc1

ox
þ u�1

oc1

or
¼ Dr

r
o

or
r
oc1

or

� �
; ð31Þ

oc2

ot
� u2

oc2

ox
þ u�2

oc2

or
¼ Dr

r
o

or
r
oc2

or

� �
: ð32Þ

The system of Eqs. (31) and (32), where values of axial
and radial velocities of particles are given by Eqs. (5), (6),
(19) and (20), reflects the main aspects of the process of sol-
ids mixing in CFB and describes the evolution of the asso-
ciated concentration fields.

We consider two extreme cases:

(a) Dr! 0. Eqs. (31) and (32) take the form

oc1

ot
þ u1

oc1

ox
þ u�1

oc1

or
¼ 0; ð33Þ

oc2

ot
� u2

oc2

ox
þ u�2

oc2

or
¼ 0: ð34Þ

As is seen, in this case, the process of mixing is merely
convective in nature.

(b) Dr!1. In this case, any difference between the
phases is lost. Multiplying (31) by Aq1, and (32) by
Bq2 and adding the obtained equations, under the con-
dition c1 = c2 = c we obtain



Fig. 2. Dependence of the mean concentration of marked particles on the
inlet from the riser on dimensionless time. (1) Pe = 0.001; (2) 0.01; (3) 0.1;
(4) 1; (5) 5; (6) 500.
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q
oc
ot
þ J s

oc
ox
¼ lim

qDr

r
o

or
r
oc
or

� �� �
: ð35Þ

The expression limðqDr

r
o
or ðr oc

orÞÞ is an uncertainty of the
1 Æ 0 type. The value of this uncertainty can be found from
the condition of physical correspondence of models (1), (2)
and (31), (32) for b*!1 and Dr!1, respectively. It is
clear that under these conditions the models are bound to
describe a common process. In [2], when b*! 0 the
equation

q
oc
ot
þ J s

oc
ox
¼ 0 ð35aÞ

was obtained for (1) and (2).
Comparison of (35) and (35a) gives limðqDr

r
o
or ðr oc

orÞÞ ¼ 0.
Eq. (35a) describes convective transfer of the marked
particles with the velocity Js/q.

The obtained system (31) and (32) was used for mathe-
matical modelling of mixing marked particles injected to
the bottom fluidized bed at the initial instant of time. We
formulate the corresponding boundary conditions.

The initial conditions: c1(0, x, r) = c2(0,x, r) = 0,
c1(0,H0, r) = c0;

the boundary conditions:

r ¼ 0 :
oc1

or
¼ 0;

r ¼ R :
oc2

or
¼ 0;

r ¼ r0 : u�1c1 � Dr

oc1

or
¼ n u�2c2 � Dr

oc2

or

� �
;

x ¼ H : �c1 ¼ �c2;

t 6 T : H 0qfb

o�c1

ot
þ Aq1u1�c1 � Bq2u2�c2 ¼ 0;

x ¼ H 0 : t > T : H 0qfb

o�c1

ot
þ Aq1u1�c1 � Bq2u2�c2

¼ J s�c1ðt � Dt;HÞ:
ð36Þ

For more details about the conditions at x = H0, which
reflect the influence of the bottom bed and outer circulation
of particles, see [8]. We note that the condition at x = H is a
corollary of the relationship

Aq1u1�c1 � Bq2u2�c2 ¼ J sðA�c1 þ B�c2Þ; ð37Þ
which indicates the presence of inner circulation of parti-
cles and the balance of fluxes of marked particles at the
outlet from the riser in the presence of good solids mixing
in this zone (Fig. 1). From the above it also follows that c2

at the outlet from the riser (x = H) does not depend on the
radial coordinate: c2(t,H, r) = u(t). Similarly, it follows
from the condition of ideal particle mixing in the bottom
bed that c1(t,H0, r) = w(t).

Problem (31), (32) and (36) is self-consistent because the
concentration of marked particles at the inlet in CFB
depends on their concentration at the outlet in the instant
of time t � Dt.
We write the system (31), (32) and (36) in the dimension-
less form:

oc1

ot0
þ u01

oc1

ox0
þ ðu�1Þ

0 oc1

or0
¼ 1

Pe
1

r0
o

or0
r0

oc1

or0

� �
; ð38Þ

oc2

ot0
� u02

oc2

ox0
þ ðu�2Þ

0 oc2

or0
¼ 1

Pe
1

r0
o

or0
r0

oc2

or0

� �
: ð39Þ

The boundary conditions:

c1ð0; x0; r0Þ ¼ c2ð0; x0; r0Þ ¼ 0;

c1ð0;H 00; r0Þ ¼ c0;

r0 ¼ 0 :
oc1

or0
¼ 0;

r0 ¼ 1 :
oc2

or0
¼ 0;

r0 ¼
ffiffiffi
A
p

: ðu�1Þ
0c1 �

R
H

1

Pe
oc1

or0
¼ n ðu�2Þ

0c2 �
R
H

1

Pe
oc2

or0

� �
;

x0 ¼ 1: �c1 ¼ �c2;

t0 6 T 0 : H 00m
o�c1

ot0
þ u02 þ ðH 00Þ

0:82

u01 þ u02
u01�c1

� u01 � ðH 00Þ
0:82

u01 þ u02
u02�c2 ¼ 0;

x0 ¼ H 00 : t0 > T 0 : H 00m
o�c1

ot0
þ u02 þ ðH 00Þ

0:82

u01 þ u02
u01�c1

� u01 � ðH 00Þ
0:82

u01 þ u02
u02�c2

¼ ðH 00Þ
0:82�c1ðt0 � Dt0; 1Þ: ð40Þ

The dimensionless velocities ðu�1Þ
0 and ðu�2Þ

0 entering into
(38) and (40) are calculated by formulas

ðu�1Þ
0 ¼ 0:41

r0

x0
u01u02

u02 þ ðx0Þ
0:82

; ð41Þ

ðu�2Þ
0 ¼ 0:41

1� ðr0Þ2

r0x0
u01u02

u01 � ðx0Þ
0:82

; ð42Þ
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which follow from (19) and (20). The quantity m = qfb/
q(H0) is calculated by the expression m ¼ 0:4Fr�0:7

t ob-
tained from (9)–(11). As is seen, the system (38)–(40) con-
tains an unknown parameter – the coefficient of radial
dispersion Dr included in the Pe number.

We estimate the ratio of dispersed and convective radial
fluxes of marked particles a. It can be done using Eq. (38)
and formula (41):
0.07
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c

a

b

0.07

0.08

0.09

0.1

0.11

0.12

0 0.1 0.2 0.3 0.4

c

Fig. 3. Dependence of the marked particle concentration on the radius at a hei
(2) 2; (3) 2.5; (4) 3; (5) 4.
a � x0ðu02 þ ðx0Þ
0:82Þ

Peðr0Þ2u01u02
: ð43Þ

Based on Dr = 0.0025 m2/s, H = 5 m, R = 0.042 m,
u = 8.2 m/s and ut = 2.3 m/s (experimental conditions in
[4]) for u01 � 1, u02 � 0:2, we obtain a � 6x 0(0.2 + (x 0)0.82)/
(r 0)2. Despite the fact that the quantity Dr is somewhat arbi-
trary, we can draw inference about the significant influence
0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

r ′

0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

r ′

ght x 0 = 0.5 in various times for Pe = 10 (a) and Pe = 125 (b): (1) t 0 = 1.2;
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of radial convective transfer on the process of solids mixing
(especially in the bottom part of the riser on the boundary
of the zones).

The system of nonstationary differential equations
describing the process of solids mixing in the circulating
Fig. 4. Evolution of the field of the concentration of marked particles [(a) t 0 = 0
for near-wall region at t 0 = 0.8 (h).
fluidized bed is solved numerically by the method of finite
differences. Implicit finite-difference scheme of the first
order of accuracy with respect to the grid pitch h is used.
The system of differential equations is solved by the
method of marching.
.1; (b) 0.2; (c) 0.3; (d) 0.4; (e) 0.8; (f) 1.2; (g) 2] and the fragment of the field



Fig. 4 (continued)
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The value of the pitch is chosen in such a way that the
solutions received with the step h and h/2 differ only from
the fourth significant digit. Calculations are stopped on
attainment of the stationary regime.

On transition from one time level to the next one the
computational algorithm consisted of the following steps:

(1) the concentration of particles in the bottom bed of
the core is calculated;

(2) successively, going from one space level to another
with the step h the distribution of concentration of
particles in the central part of the bed (the core) is
calculated;

(3) the value of concentration of particles in the upper
part of the annular zone is calculated;

(4) then, moving from the top down, concentration of
particles in the whole annular zone is determined suc-
cessively, with the step h;
0

0.1
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0.3

0.4
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0.7

0.8

0.9

0 0.5 1 1.5 2

1

2
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4

cfb

Fig. 5. Dependence of the concentration of marked particles in the bott
(5) the condition of attaining a stationary regime by the
solution is checked.

If the condition is not attained, the calculations are
repeated from the point 1.
3. The results obtained

Fig. 2 shows the calculation of mean concentrations
of marked particles at the outlet from the riser for differ-
ent values of Pe. Hereafter calculations are made at
H = 12 m; u = 6 m/s; ut = 0.5 m/s; qs = 2000 kg/m3;
Js = 50 kg/m2 s; Dt = 0 (the marked material is immedi-
ately transferred from the outlet point from of the riser
to the point of repeated input at x = H0). A stationary
value of the concentration c1 is calculated by the
formula
2.5 3 3.5 4

t'

om bed on time. (1) Pe = 1; (2) 5; (3) 10; (4) 50, 500, 5000, 50,000.
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Fig. 6. Comparison of calculational curves of mixing with the experimental data [9] at the height x 0 = 0.55 (a), x 0 = 0.32 (b), x 0 = 0.75 (c): (1) Pe = 5; (2)
10; (3) 50; (4) 500; (5) 5000; points – experiment. c0 = 0.021, Js = 147 kg/m2 s; u = 4.57 m/s; H = 12.2 m.
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c1 ¼
c0

1þ 5:5
m H 00
� ��0:18 � 1
� 	 ; ð44Þ

which follows from the equation of material balance of the
marked particles. Fig. 3 shows the propagation of the con-
centrations of marked particles along the riser radius at
x 0 = 0.5. The influence of the coefficient of radial disper-
sion Dr on the dependences c1(r) and c2(2) is seen well.
Fig. 4 shows the detail evolution of the concentration fields
in time. The propagation of the wave of the concentration
of marked particles in the core zone (at velocity u1) is
clearly defined. The special type of the distribution of the
concentration of marked particles at the outlet from the
riser (Fig. 4g) corresponds to the condition �c1 ¼ �c2 and
reflects the influence of the inner circulation of particles
and the equality c2(t 0, 1, r 0) = u(t 0). The rate of ‘‘washing-
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Fig. 7. Dependence of c1jr0
=�c1 (a) and Pec/Pe (b) on the dimensionless height

t 0 = 1.2].
out’’ of the marked particles from the bottom layer is
shown in Fig. 5. As is seen, the equilibrium concentration
of marked particles is accomplished here at t 0 = 1.3 (at
Pe P 1). Fig. 6 shows the comparison of the calculated
for Dt!1 experimental data of [9], where the quantities
�c1 and �c2 are measured at different points of the riser with
a diameter 0.305 m. The values of Dr obtained by the least
square technique is within the range 0.0006–0.006 m2/s. We
note that Dr = 0.0025 m2/s obtained in [4] is also in the
indicated range. We note that peculiar ‘‘tongues’’ in
Fig. 6b and c reflect the influence of inner circulation which
is clearly seen at low Dr (high Pe). The time of the arrival of
these ‘‘tongues’’ is calculated by the formula

t ¼ H � H 0 þ H � x
: ð45Þ
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of the riser: (1,5) Pe = 5; (2,6) 10; (3,7) 50; (4,8) 125; [(1–4) t 0 = 0.8; (5–8)
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From relation (28) we find the equation for the coeffi-
cient b1

b1 ¼ �
u1

q1

dq1

dx

c1jr0

�c1

: ð46Þ

In the model of longitudinal mixing [2] this parameter is
expressed as

b1 ¼ �
u1

q1

dq1

dx
: ð47Þ

In connection with this, of importance is Fig. 7a which
shows the quantity c1jr0

=�c1 calculated for different heights
and times. As is seen, the relation approaches the unity
only for relatively large values of time. By analogy, from
(29) for b* we obtain

b� ¼
2Dr

R2

r0q1

q
oc1

or

����
r0

 ,
�c2 � �c1ð Þ

!
ð48Þ

or in the dimensionless form

Pec

Pe
¼ Aþ Bn

2
ffiffiffi
A
p �c2 � �c1

oc1

or0

�� ffiffi
A
p

; ð49Þ

where Pec = (u � ut)/(b*H). The dependence of Pec/Pe on
x 0 at different times is shown in Fig. 7b. As is seen, this
quantity is not constant. Fig. 7 attests that model (1) and
(2) with the constant coefficient b*, strictly speaking, is
not a result of averaging of (15) and (16). It is defined as
an independent model which is able, as the experience im-
plies, in spite of the simplicity, to satisfactorily describe the
experimental data.

4. Conclusions

Thus, the formulated generalized model of solids mixing
accounts for the main characteristic features of the process:
existence of the inner and outer particle circulation, con-
vective particle fluxes in the radial direction, existence of
the bottom bed. The model is able to satisfactorily describe
the experimental data and give reasonable values of the
coefficient of the radial disperse of particles.
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